Polska zajmuje drugie miejsce na świecie pod względem wielkości produkcji baterii do samochodów elektrycznych. Akumulatory litowo-jonowe stanowią już ponad 2,4 proc. całego polskiego eksportu. Wartość sektora baterii wzrosła 38-krotnie w ciągu ostatnich sześciu lat – z ok. 1 mld PLN w 2017 r. do ponad 38 mld zł w 2022 r.
Na rynku baterii do samochodów elektrycznych wciąż zachodzą dynamiczne zmiany. Dzięki ulepszeniom systematycznie wprowadzanym w akumulatorach udział w rynku pojazdów o napędzie elektrycznym ma szansę znacznie się zwiększyć w ciągu najbliższych lat. Sprawdź, jakie typy baterii są aktualnie wykorzystywane, dowiedz się, jakie trendy obecnie panują w branży elektromobilności i jakich zmian możemy spodziewać się w nadchodzącej dekadzie. Rodzaje baterii do samochodów elektrycznych Jednym z najbardziej istotnych elementów budowy samochodów elektrycznych jest bateria składająca się z połączonych ogniw – to w niej magazynuje się energię, która wprawia pojazd w ruch. Baterie różnią się przede wszystkim długością cyklu życia, składem chemicznym, czy też wagą. Obecnie najpopularniejsze są baterie litowo-jonowe, dzięki którym zasięg pojazdu na jednym ładowaniu może sięgać nawet kilkuset kilometrów. Tego typu technologia jest wykorzystywana nie tylko w branży transportowej, ale i w różnego rodzaju urządzeniach elektronicznych – smartfonach, czy też laptopach. Obecnie na rynku występują 4 rodzaje baterii litowo-jonowych. Baterie litowo - jonowe do samochodów elektrycznych Wśród wymieniowych wyżej typów największe zainteresowanie producentów pojazdów elektrycznych wzbudzają baterie litowo-niklowo-kobaltowo-manganowe. Jak wynika z raportu o najważniejszych trendach na rynku baterii do samochodów elektrycznych, stworzonego przez Frost & Sullivan, tego typu akumulatory posiadają szereg zalet. Do najważniejszych z nich należą wysoka wydajność, bezpieczeństwo oraz niewielkie rozmiary. Ładowanie pojazdu elektrycznego – rodzaje stacji ładowania Stacje ładowania do pojazdów o napędzie elektrycznym możemy podzielić na tzw. stacje wolne (o mocy mniejszej niż 11 kW), średnio szybkie (o mocy 11-22 kW), jak i szybkie (o mocy większej niż 50 kW). Według IEA to prywatne stacje ładowania zlokalizowane przy domach, czy też biurowcach, stanowiły w 2017 roku największą część infrastruktury do ładowania samochodów elektrycznych – wtedy na całym świecie było ich ok. 3 miliony. Natomiast stacje ładowania przeznaczone do użytku publicznego były w tym czasie nieco mniej popularne. Ich liczba kształtowała się na poziomie ok. 430 tys. (ok. 25% z nich to ładowarki szybkie). Zgodnie z przewidywaniami IEA liczebna przewaga prywatnych stacji ładowania ma szansę znacząco zwiększyć się do 2030 roku. Jak długo ładuje się baterię do auta elektrycznego? Czas ładowania baterii jest uzależniony od konkretnego modelu samochodu, pojemności baterii oraz tego, jak uzupełniamy energię. Co ważne, niektóre modele posiadają pewne ograniczenia, dotyczące sposobu ich ładowania – przed pierwszym ładowaniem pojazdu należy zapoznać się informacjami podanymi przez producenta. W przeciwnym razie bateria może zostać uszkodzona, co narazi nas na dodatkowe koszty. Baterię do auta elektrycznego można ładować na kilka sposobów: korzystając z ładowarki umieszczonej na publicznej stacji ładowania, korzystając z domowej stacji ładowania, korzystając z gniazdka domowego. Mimo że ładowanie samochodu za pomocą zwykłego gniazdka w garażu jest możliwe, znacznie bezpieczniejszym i wydajniejszym rozwiązaniem będzie skorzystanie ze stacji ładowania. Stacje posiadają o wiele większą moc, dzięki czemu pojazd zostanie naładowany w zdecydowanie krótszym czasie. Przykładowo, na naładowanie przeciętnego samochodu z domowego gniazdka o mocy 230 V w niektórych przypadkach potrzeba nawet 8-15 godzin. Wolne stacje ładowania o mocy nieco ponad 3 kW, umożliwiają nam pełne naładowanie auta w ok. 6 godzin lub więcej. Korzystając ze średnio szybkiej stacji ładowania, możesz skrócić ten czas nawet do 3-4 godzin. Natomiast szybkie stacje ładowania pozwalają na naładowanie akumulatora nawet w 30 minut! Na czas ładowania baterii wpływa również moc, jaką ładowarki znajdujące się wewnątrz pojazdów są w stanie przyjąć. W zależności od samochodu wartości te mogą wahać się między 3,6 kW (bardzo wolne) a nawet ponad 40 kW (bardzo szybkie) na godzinę. Jakie czynniki wpływają na trwałość baterii litowo-jonowych? Nieprawidłowa eksploatacja pojazdu (mało ekonomiczna technika jazdy, czy też sposób ładowania samochodu) i czynniki zewnętrzne mogą w negatywnym stopniu wpłynąć na trwałość baterii. Jednym z czynników, które mogą zaszkodzić jej najbardziej, jest temperatura – zbyt niska może zmniejszyć wydajność, a także zasięg pojazdu. Natomiast zbyt wysoka temperatura niesie ze sobą ryzyko uszkodzenia baterii – do podobnej sytuacji niekiedy może doprowadzić także użycie nieodpowiedniej ładowarki. Do przegrzania akumulatora może dojść w sytuacji, kiedy pojazd jest zbyt długo podłączony do stacji ładowania lub samochód jest trzymany w miejscu, w którym panują zbyt wysokie temperatury. Warto także zaznaczyć, że bateriom jonowo-litowym nie służy ich rozładowywanie do 0%, ani ładowanie do pełna. Pojemność baterii może sukcesywnie się obniżać wraz z każdym pełnym naładowaniem i rozładowaniem akumulatora, co skutkuje także mniejszym zasięgiem pojazdu na jednym ładowaniu. Utrzymywanie energii na poziomie 50-80% pojemności baterii to optymalne warunki dla tego rodzaju akumulatorów. Współcześnie wykorzystywane rozwiązania są stale doskonalone – obecne nadal posiadają wiele ograniczeń, które utrudniają im konkurowanie z pojazdami spalinowymi. Wciąż dąży się do tego, by ładowanie baterii było szybsze, a same akumulatory stały się znacznie wydajniejsze, lżejsze, mniejsze i trwalsze. Stworzenie niezawodnego produktu posiadającego wszystkie te cechy to prawdziwe wyzwanie dla osób pracujących przy powstawaniu pojazdów elektrycznych. Jednak według ekspertów w nadchodzącej dekadzie możemy spodziewać się prawdziwej rewolucji na rynku elektromobilności. Testowanie nowych kombinacji pierwiastków w bateriach (a przede wszystkim baterii ze stałym elektrolitem), może doprowadzić do znalezienia rozwiązania, dzięki któremu samochody elektryczne będą dorównywały wydajnością współczesnym pojazdom spalinowym, a ich ładowanie stanie się bardziej komfortowe. Trendy na rynku baterii do samochodów elektrycznych Według danych z raportu Frost & Sullivan baterie stanowią 50% ceny samochodu elektrycznego – w najbliższych latach ten stan rzeczy ma ulec zmianie. Wysokie koszty związane z produkcją akumulatorów, przyczyniają się do wzrostu cen pojazdów, a tym samym tego typu inwestycja staje się znacznie mniej przystępna pod względem finansowym dla wielu z nas. Frost & Sullivan zapowiadają, że wysokie ceny aut elektrycznych już wkrótce staną się przeszłością. Przewiduje się, że do 2020 roku koszt produkcji baterii obniży się o ponad 40% (ze 170 USD/kWh w 2018 roku na 100 USD/kWh w 2020 roku) i stosunkowo duża dysproporcja między cenami samochodów elektrycznych a spalinowych, zmniejszy się. Optymalizacja kosztów produkcji baterii sprawi, że samochody elektryczne staną się tańsze i więcej kierowców niż dotychczas będzie mogło pozwolić sobie na zakup tego typu pojazdu. W dodatku kolejna generacja baterii ma być znacznie wydajniejsza – ich pojemność może przekroczyć 60 kWh. Innowacyjne baterie ze stałym elektrolitem Wspomniane już wcześniej baterie ze stałym elektrolitem mogą prawdziwie zrewolucjonizować sektor elektromobilności. Oto ich największe zalety: większe bezpieczeństwo, poprawa wydajności, dzięki większej pojemności baterii, wzrost gęstości energii o 2,5-raza, niższe koszty produkcji, redukcja kosztów kWh. Baterie ze stałym elektrolitem mają być nie tylko bezpieczniejsze niż dotychczas wykorzystywane baterie litowo-jonowe, ale także wydajniejsze i generować mniejsze koszty produkcji. Baterie ze stałym elektrolitem sprawią, że zasięg samochodu na jednym ładowaniu stanie się większy – w niektórych przypadkach może wzrosnąć aż do 800 km! Nad tym rozwiązaniem pracują już takie koncerny jak BMW i Toyota. Toyota zapowiada wprowadzenie produktu na rynek do 2023-2025 roku. Aktualnie ogromne zainteresowanie wzbudzają ogniwa do baterii produkowane w technologii NCM 811. Charakteryzują się małą zawartością kobaltu (10%) oraz manganu (10%) na rzecz większego udziału niklu (80%) – ograniczenie ilości zbyt drogiego i trudno dostępnego kobaltu oznacza również redukcję kosztów kWh. Ogromną zaletą ogniw NCM 811 jest także zapewnienie większej pojemności baterii bez jednoczesnego zwiększania jej rozmiaru. Oznacza to, że nawet w przypadku kompaktowych modeli samochodów, można uzyskać w pełni satysfakcjonujący zasięg na jednym ładowaniu. Ogniwa te wciąż znajdują się w fazie testowej, jednak wszystko wskazuje na to, że nie będziemy musieli zbyt długo czekać na ich wprowadzenie na rynek. NCM 811 mogą wyznaczyć nowy kierunek rozwoju branży elektromobilności i sprawić, że pojazdy o napędzie elektrycznym przestaną być towarem luksusowym, ale niezwykle przystępną alternatywą dla pojazdów spalinowych. Szukasz ładowarki do samochodu elektrycznego? Sprawdź dostępne w ofercie AmperGo ładowarki, wallboxy i stacje ładowania aut elektrycznych:
Rodzaj baterii do roweru elektrycznego. Obecnie największą wydajnością cieszą się baterie litowo-jonowe, które znacznie przewyższają baterie żelowe oraz litowo-polimerowe. Dlatego, przy zakupie akumulatora, koniecznie zwróć uwagę na jego rodzaj – litowo-jonowy będzie strzałem w dziesiątkę. W systemie Shimano EP8 bateria jest
Jak dobrze wiecie, technologia litowo-jonowa to nasz chleb powszedni. Nie każdy jednak zdaje sobie sprawę, jak bardzo powszechna jest ona w życiu każdego z nas. Bateria litowo-jonowa to przecież nie tylko laptopy, ale i elektronarzędzia, odkurzacze, drony, a nawet samochody. Dzisiaj dowiemy się czym tak naprawdę są baterie litowo-jonowe (zwane też bateriami li-ion) i dlaczego są tak powszechne. Z tego artykułu dowiesz się: jaka jest historia technologii li-ion,dlaczego baterie litowo-jonowe to dobry wybór,jak zbudowany jest akumulator litowo-jonowy,jak wydajne są baterie litowo-jonowe. Historia rozwoju technologii li-ion Już na początku XX wieku zauważono duży potencjał litu jako tworzywa baterii. Jest to metal o najmniejszej gęstości, dużym potencjale elektrochemicznym i wysokim stosunku energii do masy. Amerykański fizyk chemiczny George Newton Lewis rozpoczął eksperymenty z litowymi bateriami już w roku 1912, lecz dopiero w 1970 roku akumulatory litowe pojawiły się na rynku. Pierwszy ważny krok w kierunku ogniw litowo-jonowych nastąpił w roku 1979. Profesor John Goodenough oraz Koichi Mizushima na Uniwersytecie Oksfordzkim stworzyli nowy rodzaj baterii litowej, w której lit mógł wędrować przez baterię z jednej elektrody w drugą w postaci jonów. Rozwiązanie to jest bazą dla obecnych baterii litowo-jonowych. Poniżej schemat działania akumulatora. Podczas ładowania jony litu przemieszczają się z węglowej anody do katody z tlenku litu i innego metalu i są tam przechowywane. Podczas rozładowania proces ten się odwraca… ale o samej budowie i działaniu za chwilę. Pierwszej komercyjnej baterii litowo-jonowej doczekaliśmy się jednak dopiero w 1991 roku. Wprowadziło ją Sony w swoich kamerach, a kolejne firmy podążyły śladami japońskiego giganta. Szybko dostrzeżono wielką przewagę technologii litowo-jonowej nad dominującą wówczas niklowo-kadmową. Atutem była nie tylko wysoka gęstość, pozwalająca na zgromadzenie dwukrotnie większego ładunku w baterii o takim samym rozmiarze, ale i wysokie napięcie ogniwa na poziomie Ogniwa niklowo-kadmowe uzyskiwały napięcie więc potrzebowalibyśmy trzech, by uzyskać podobne napięcie. Dodatkowe zalety, które popchnęły li-ion do przodu to brak efektu pamięci, niska szkodliwość dla środowiska oraz wolniejsze samorozładowanie. Czy baterie litowo-jonowe to dobry wybór? Baterie litowo-jonowe – porównując je z bateriami tworzonymi w starych technologiach – są bardziej wydajne, dużo szybciej się ładują, a dodatkowo (co ma znaczenie zwłaszcza w przypadku sprzętów mobilnych) – są lżejsze. Można je bez problemu „doładowywać” w dowolnej chwili. W trosce o ich żywotność nie ma potrzeby czekania aż rozładują się w pełni, aby dopiero wtedy je doładować – a to czyni je wygodniejszymi w użytkowaniu. Budowa akumulatora litowo-jonowego Chcąc przybliżyć temat budowy akumulatora litowo–jonowego, na początku wypadałoby rozgraniczyć dwa pojęcia, którymi będziemy się posługiwać w tym segmencie. Chodzi tutaj o ogniwo i baterię. Niestety, te dwa terminy często są ze sobą mylone. Ogniwo – podstawowe urządzenie przeznaczone do magazynowania energii składające się z elektrod, separatora i elektrolitu. W teorii samo ogniwo mogłoby funkcjonować jako bateria, jednak w przypadku ogniw litowo-jonowych byłoby to niebezpieczne, między innymi ze względu na ryzyko przegrzewania. Ogniwo litowo-jonowe może przybierać różne kształty, jednak zdecydowanie najczęściej używana jest forma ogniwa cylindrycznego 18650 (takie ogniwa litowo jonowe do samodzielnej wymiany znajdziesz w Świecie Baterii). Liczba 18650 oznacza wymiary – około 18 mm średnicy i 65 mm długości. Takie ogniwa osiągają maksymalną pojemność 3500 mAh, jednak prąd, jaki mogą oddawać, może się różnić w zależności od ich budowy. Ogniwa mogą mieć różną strukturę chemiczną, co znacznie wpływa na parametry. Najpopularniejszą wersją jest litowo-kobaltowa, ale do budowy ogniw mogą być użyte mangan, tytan, aluminium czy nikiel w różnych mieszankach i proporcjach. Większość tych opcji jest jednak nieopłacalna. Ogniwo litowo-jonowe typu 18650 produkcji Samsung Bateria (akumulator) – bateria to urządzenie służące do magazynowania energii elektrycznej i przystosowane do oddawania tej energii w bezpieczny sposób. Na potrzeby artykułu ograniczamy się tylko do definicji akumulatora litowo-jonowego, który jest baterią wielokrotnego użytku – można go ładować i rozładowywać. Akumulator może składać się z dowolnej ilości ogniw. Większość baterii litowo-jonowych składa się właśnie ze wspomnianych wcześniej ogniw 18650 łączonych szeregowo w wyższe napięcia. Te same ogniwa mogą tworzyć zarówno baterię do laptopa o napięciu 10,8V (6 ogniw, łączonych 3S2P, czyli 3 szeregowo i 2 równolegle), jak i ogromną baterię Tesli P100D o napięciu ponad 400V i mocy maksymalnej 451 kW. Bateria ta składa się z ponad 7000 ogniw typu 18650, podobnych jak na zdjęciu powyżej. Wszystko jednak wskazuje na to, że technologia ta zostanie zmieniona na inny typ li-ion. Tesla przy współpracy z Panasonic opracowuje nowy rodzaj ogniwa w formacie 2170 i z inną strukturą chemiczną. Póki co plan ten jest ograniczony tylko do Tesli Model 3- pierwszego samochodu budżetowego amerykańskiego pioniera technologii. Akumulator z Tesli S, a w środku ponad 7000 ogniw typu 18650 Wydajność i żywotność baterii litowo-jonowej Czas pracy akumulatora litowo-jonowego jest zależny od dwóch kwestii: pojemność i zużycia energii. Pojemność w przypadku baterii li-ion wyrażamy najczęściej w mAh i w przypadku każdej baterii ulega zmianie na skutek użytkowania. Fabryczna pojemność maksymalna baterii do laptopa na poziomie np. 4400 mAh po roku użytkowania może już być zmniejszona np. do 4000 mAh. To oczywiście bezpośrednio wpływa na czas pracy urządzenia. Jeśli chcecie dowiedzieć się nieco więcej o pojemności baterii, zajrzyjcie do naszego artykułu poświęconego właśnie temu tematowi. Drugi aspekt to zużycie energii. W przypadku laptopa, lub telefonu, zużycie energii może wynikać z bardzo wielu czynników, takich jak jasność ekranu, zużycie procesora, korzystanie z internetu, a nawet z temperatury i wieku samego urządzenia. W zależności od każdego z tych warunków czas pracy może się różnić diametralnie. Należy także pamiętać, że bateria litowo-jonowa traci ładunek także w spoczynku. Każdy akumulator jest podatny na starzenie i te tworzone w technologii li-ion nie są wyjątkiem. Ich żywotność jednak może się znacznie różnić w zależności od intensywności i poprawności użytkowania. Bardzo częstym przypadkiem jest, że identyczny akumulator litowo jonowy u jednej osoby przetrwa 1,5 roku, a u innej nawet 5 lat. Krótszy żywot baterii bardzo często wynika z nieodpowiedniego korzystania. Najbardziej szkodliwym błędem, jaki można popełnić jest doprowadzenie do głębokiego rozładowania poprzez wyładowanie baterii do 0% i pozostawienie jej w tym stanie przez dłuższy czas. Choć więc baterie litowo jonowe uznawane są za bardzo wydajne – ich żywotność uzależniona jest od sposobu użytkowania. Niestety, bardzo często zupełnie nieświadomym działaniem mocno szkodzimy baterii i zamiast po kilku latach, odmawia nam ona współpracy po roku. Jeśli chcecie się dowiedzieć więcej o poprawnej obsłudze akumulatora, zajrzycie do naszego poradnika – Jak korzystać z baterii. Dalszy rozwój akumulatora litowo-jonowego? Co prawda, technologia li-ion i podobna jej litowo-polimerowa wciąż zdecydowanie dominują w większości urządzeń przenośnych, ale nie oznacza to, że nie szykują się zmiany w tym zakresie. Na horyzoncie mamy co najmniej kilka usprawnień, które mogą jeszcze bardziej pchnąć do przodu technologię mobilną. Na pewno jednym z nich jest wspomniana wcześniej nowa technologia tworzona przez Teslę. Pojawiły się także usprawnienia związane z wykorzystaniem grafenu. Jeśli tylko uda się odnaleźć prostą i tanią metodę uzyskiwania grafenu, może on z pewnością być wykorzystany do zwiększenia sprawności ogniw litowo-jonowych. O grafenie w bateriach także przeczytacie w naszym artykule. Mamy nadzieję, że wystarczająco naświetliliśmy kwestię li-ion, ale jeśli macie jakiekolwiek pytania, śmiało zadawajcie w komentarzach! Licznik wyświetleń: 254 492
Toyota i 1000 km zasięgu auta elektrycznego. Nowy SUV jako pierwszy. Toyota wprowadzi tańsze o 40 proc. i wydajniejsze baterie do samochodów popularnych. Toyota wprowadzi bipolarne baterie litowo-jonowe. Toyota wprowadza baterie ze stałym elektrolitem. Zasięg nawet 1500 km i ładowanie w 10 minut. Nowa Toyota ze stałym elektrolitem.
Branża automotive, Baterie samochodowe, Zielona mobilnośćBaterie do samochodów elektrycznych – najwięksi producenci i rola dodatkowych komponentów 15 lutego 2022 Rozwój rynku ogniw litowo-jonowych nie zwalnia tempa. Wręcz przeciwnie – z roku na rok powstaje coraz więcej firm specjalizujących się w produkcji baterii do samochodów elektrycznych. Według wstępnych szacunków już do 2040 roku około 70% wszystkich pojazdów osobistych będzie napędzanych prądem – istotną rolę w tej transformacji odegrają producenci baterii. Jakie firmy produkują baterie do samochodów elektrycznych? Rosnący popyt na baterie litowo-jonowe daje firmom zajmującym się ich produkcją realną szansę na intensywny rozwój. Obecnie największymi graczami na tym rynku są przede wszystkim Chiny, Japonia, Korea i USA – to właśnie w tych krajach swoje siedziby mają topowe firmy produkujące baterie do samochodów elektrycznych, takie jak Panasonic, LG Chem, Samsung, Beijing Pride Power, SB LiMotive czy Tesla. Kompletna lista jest znacznie dłuższa i stale dołączają do niej kolejne koncerny. Warto także zwrócić uwagę na dodatkowe elementy, które wspierają pracę akumulatora lub zabezpieczają ten kluczowy komponent – są to części związane między innymi z izolacją czy amortyzacją. Zobacz także: Systemy izolacyjne akumulatorów samochodowych i rozwiązania ochrony przed wstrząsami Rola Unii Europejskiej w produkcji akumulatorów do samochodów elektrycznych Według prognoz w ciągu najbliższych 20 lat zapotrzebowanie na akumulatory EV może wzrosnąć nawet pięciokrotnie. Unia Europejska intensywnie wspiera rozwój rynku samochodów elektrycznych i aktywnie promuje tego typu rozwiązania – z tego względu w 2017 roku Komisja Europejska uruchomiła europejski sojusz na rzecz baterii (EBA – European Battery Alliance). Już zaledwie po roku od jego wprowadzenia osiągnięto znaczne postępy w dziedzinie produkcji akumulatorów w Europie. Zobacz także: Rozwój światowej branży automotive po 2021 roku a COVID-19 Na rynku europejskim prym w produkcji baterii wiedzie szwedzka firma Northvolt. Ważnym konkurentem dla rynku azjatyckiego jest także Automotive Cell Company (ACC) – wspólne przedsięwzięcie koncernów Saft/Total i PSA/Opel. W kontekście firm, które zajmują się wytwarzaniem akumulatorów do samochodów elektrycznych, warto też wspomnieć o polskich przedsiębiorstwach. Mimo że nad Wisłą nie ma jeszcze fabryki produkującej tego typu samochody, już teraz realizowane są duże projekty związane z komponentami na potrzeby produkcji baterii. Nie brakuje także polskich oddziałów firm o globalnym zasięgu. Jednym z przykładów jest LG Solution Wrocław – obecnie największy w Europie producent baterii litowo-jonowych dla przemysłu motoryzacyjnego. Zobacz także: Ruszyła produkcja części samochodowych z tworzywa EPP we wrocławskiej fabryce Koszt akumulatora do samochodu elektrycznego stanowi obecnie ponad 30 procent całkowitej wartości pojazdu. Powodem są wysokie ceny surowców ziem rzadkich, które są niezbędne do wyprodukowania baterii – mowa między innymi o licie, niklu, kobalcie i magnezie. Wydatki związane z wydobyciem tych pierwiastków stanowią ponad połowę kosztów całego akumulatora. Ponadto na ceny baterii do samochodów elektrycznych wpływa także konieczność zastosowania w konstrukcji dodatkowych elementów, których zadaniem jest zapobieganie przebiciom elektrycznym oraz ochrona wrażliwych elementów akumulatora. Akumulatory LFP od Tesli Rosnące ceny surowców motywują niektóre firmy do szukania alternatywnych rozwiązań – przykładem może być Tesla, która w 2020 roku ogłosiła, że zamierza przejść na tańsze akumulatory litowo-żelazowo-fosforanowe. Ruch ten nie będzie jednak dotyczyć wszystkich modeli pojazdów oferowanych przez firmę. Nad poprawą wydajności nowych komponentów pracuje Contemporary Amperex Technology Co. – największy na świecie producent baterii. Metody produkcji są natomiast opracowywane ze startupami takimi jak Our Next Energy z Novi w stanie Michigan. Elon Musk ogłosił niedawno, że baterie LFP wykorzystywane będą we wszystkich tańszych modelach, z kolei te na bazie niklu i manganu – w samochodach ukierunkowanych na osiąganie dalekich zasięgów. Zobacz także: Akumulatory półprzewodnikowe – nowoczesne technologie dla EV Sama bateria to nie wszystko – liczą się także dodatkowe komponenty Podobnie jak inne podzespoły samochodu, akumulator EV musi być odpowiednio chroniony. Ruch drogowy to dość wymagające środowisko dla baterii litowo-jonowych – podczas jazdy są one narażone na różnego rodzaju wstrząsy i dość intensywną eksploatację. W efekcie ich pojemność i wydajność może stopniowo spadać, co przekłada się na niższy zasięg samochodu. Istotne jest zatem stosowanie komponentów takich jak separatory ogniw, które amortyzują wstrząsy, czy wytrzymałe elementy izolacyjne. Ochrona akumulatora a jego trwałość i żywotność Oprócz samej produkcji firmy specjalizujące się w bateriach do samochodów elektrycznych przywiązują ogromną wagę do opracowania nowych technologii zwiększających trwałość i żywotność akumulatorów. Biorąc pod uwagę wysokie koszty produkcji baterii, ważne jest, aby cechowały się wydajnością i niskim zużyciem nawet po długim okresie użytkowania. Jednym z decydujących czynników, które mają wpływ na trwałość baterii, jest sposób jej eksploatacji – równie ważne jest jednak jej odpowiednie zabezpieczenie. Swoje rozwiązania na tym polu oferuje grupa Knauf Automotive, która specjalizuje się między innymi w systemach izolacyjnych akumulatorów samochodowych i komponentach, które chronią baterię przed wstrząsami. Knauf Automotive stawia na lekki i elastyczny materiał, jakim jest spieniony polipropylen (EPP), który doskonale sprawdza się podczas wytwarzania elementów izolacyjnych. Produkowane są z niego kompletne zestawy izolacji akumulatorów, które cechuje nie tylko niska waga, lecz także odporność na różnego rodzaju uszkodzenia mechaniczne. Ponadto pianka EPP ma właściwości termoizolacyjne, które zapobiegają przenoszeniu wysokich temperatur pomiędzy poszczególnymi ogniwami. Jest też odporna na działanie ognia i wysokich temperatur – to kolejne cechy, które mają znaczenie w kontekście baterii do samochodów elektrycznych. Nie wahaj się z nami skontaktować, jeśli masz jakiekolwiek pytania – przygotujemy rozwiązanie dostosowane do Twoich potrzeb.
I zaznacza, że Polska zajmuje drugie miejsce na świecie pod względem wielkości produkcji baterii do samochodów elektrycznych. Akumulatory litowo-jonowe stanowią już ponad 2,4 proc. całego polskiego eksportu. Polska światowym gigantem w produkcji baterii do samochodów. Wartość sektora baterii wzrosła 38-krotnie w ciągu ostatnich
Każdy nosi je przy sobie, a mało kto wie jak działają. Zapraszam na artykuł odkrywający tajemnicę tych niezwykłych akumulatorów. Dawno, dawno temu… Zacznijmy może od ciekawostki. Czy wiesz, że pierwszy akumulator powstał przeszło 160 lat temu? Był to model ołowiowo-kwasowy, zbudowany w 1859 roku przez niejakiego Gastona Planté. I choć świat od tamtej pory poszedł mocno do przodu, to poczciwym ,,kwasówkom” udało się jakoś przetrwać do dziś. Wszystko dzięki ich zdolności do błyskawicznego dostarczenia ogromnej mocy, jakiej wymagają chociażby rozruszniki samochodów spalinowych. Nie bez znaczenia jest też ich niska cena – akumulatory kwasowo-ołowiowe do dziś nie mają pod tym względem konkurencji. Spieszmy się kochać akumulatory kwasowe – za 15 lat będą gatunkiem mocno zagrożonym Ponad pół wieku później, w 1908 roku Thomas Alva Edison zaprezentował światu akumulator niklowo-żelazowy (Ni-Fe). Skonstruował go z myślą o elektrycznych samochodach (tak, ta technologia również jest niezwykle stara). Niestety koszt produkcji ogniw Ni-Fe okazał się na tyle duży, iż nie znalazły one powszechnego zastosowania. Niszą, do której pasowały idealnie, okazały się segmenty urządzeń przeznaczonych do pracy pod ziemią oraz elektrycznych pociągów (dla których ,,kwasówki” były niewystarczające). Co ciekawe z akumulatorów Ni-Fe do dziś korzystają lokomotywy serwisowe londyńskiego metra (uruchamiane w razie braku prądu w mieście). Niedługo potem, po 10 latach wytężonych prac Waldemara Jungnera, w 1909 roku pojawiły się pierwsze akumulatory niklowo-kadmowe (Ni-Cd). Ich kariera bardzo szybko nabrała rozpędu, głównie za sprawą w miarę przystępnej ceny i obu Wojen Światowych. Stąd, w pierwszej połowie XX wieku, akumulatory Ni-Cd były podstawowym źródłem energii sprzętu wojskowego: od lotnictwa (rozruch silników), przez technologię komunikacyjną, na zasilaniu słynnych pocisków rakietowych V-2 kończąc. Po II Wojnie Światowej nastała era tranzystorów i miniaturyzacji, a wraz z nią potrzeba tworzenia coraz to lżejszych i mniejszych akumulatorów. Wtedy też w latach 60-tych Volkswagen opracował ogniwa niklowo-metalowo-wodorkowe (NiMh). Akumulatory te po pewnym czasie (i kilku usprawnieniach) były w stanie przechować ponad 2 razy więcej energii niż ich starsi, kadmowi bracia o tych samych gabarytach. Do tego NiMh’y były jeszcze tańsze w produkcji, przez co w latach 80-tych praktycznie przejęły rynek akumulatorów. I choć na horyzoncie majaczyła już bardzo obiecująca technologia litowa, to ogniwa NiMh bardzo długo pozostały podstawowym źródłem energii tanich elektronarzędzi, aparatów fotograficznych, zdalnie sterowanych zabawek, a nawet samochodów elektrycznych (Toyota Prius, Honda Civic Hybrid, czy Forde Espace Hybrid). Niestety ani niska cena, ani niezłe parametry, nie mogły dawać szans w starciu ze zbliżającym się wielkimi krokami litem. Ten niepozorny pierwiastek już wkrótce miał zadecydować o tym jak będzie wyglądał nadchodzący XXI wiek. Akumulatory litowo-jonowe w telefonach goszczą już od 20 lat W 2019 roku John Goodenough, Stanley Whittingham i Akira Yoshino zostali uhonorowani nagrodą Nobla w dziedzinie chemii za opracowanie i rozwój akumulatorów litowo-jonowych. To właśnie ta trójka zauważyła potencjał drzemiący w licie jeszcze w latach 70-tych i rozpoczęła nad nim badania. Pierwszy akumulator działający w oparciu o lit opracowała firma Exxon już w 1978 roku. Choć trzeba nadmienić, że określenie ,,działający” użyte jest tutaj nieco na wyrost. Tak naprawdę potrzeba było kolejnych kilkunastu lat wytężonej pracy, by wreszcie w 1991 roku firma Sony wypuściła w pełni bezpieczne, sprawne, niezwykle wydajne i dostępne dla każdego Kowalskiego akumulatory litowo-jonowe. Ich rewolucyjne wręcz parametry nie pozostawiały złudzeń: ,,litówki” rozpoczęły właśnie ekspansję, której nie da się już powstrzymać. Dziś, po około 30 latach od ich narodzin, trudno byłoby znaleźć osobę, która nie ma choć jednego takiego akumulatora przy sobie (w telefonie, czy zegarku) i co najmniej kilku w domu. Co takiego sprawiło, że lit wyparł wszystkie inne konstrukcje? Dlaczego wybór padł właśnie na ten pierwiastek i co jest w nim takiego niezwykłego? Zapraszam do dalszej części artykułu! Sztuka pozyskiwania energii Pierwiastek lit odkryty został już w 1817r.. To oznacza, że musiało minąć niemal 150 lat, nim w ogóle zaczęto brać go pod uwagę w roli składnika akumulatorów. Dlaczego trwało to tak długo? Z bardzo prostego powodu – lit to dość problematyczny i trudny do okiełznania pierwiastek. Aby dokładnie zrozumieć jego wady i zalety musimy zacząć od absolutnych podstaw. Zasadniczo wszystkie akumulatory (jak i zwykłe baterie) to pojemniki wypakowane związkami chemicznymi – związkami, które reagując ze sobą potrafią produkować prąd. I to właśnie ten prąd jest tutaj kluczem, bowiem to on niesie ze sobą życiodajną energię elektryczną, bez której żadne urządzenie elektryczne nie może działać. Ale w jaki sposób prąd elektryczny transportuje energię do naszego smartfona? To proste. Prąd to nic innego jak strumień pędzących przed siebie elektronów. No może z tym ,,pędzących” nieco przesadzam, bo elektrony są tak naprawdę potwornie powolne. Czasami jednak nie liczy się prędkość, a ilość i pod tym względem, w trakcie każdej sekundy, przez nasze smartfony przesączają się tryliony tych ,,małych kuleczek”. Każdy kto zgłębiał fizykę kwantową wie, że myślenie o elektronach jak o ,,małych kuleczkach” to zabawa dobra dla przedszkolaków. Ale czy to źle? Elektrony są tak małe, że nawet z pomocą najlepszych mikroskopów i tak nie jesteśmy w stanie ich dostrzec. Kto wie, może tak naprawdę mają one kształt kwadratów, trójkątów, albo żelkowych misiów Haribo? Zresztą kształt w kwestii transportu energii nie ma najmniejszego znaczenia. Tak naprawdę chodzi o sam ruch cząsteczek i idące za nim konsekwencje. Biorąc do ręki kamień i rzucając go przed siebie nadajesz mu pewną prędkość. A jeśli weźmiemy pod uwagę również masę kamienia, to wówczas możemy mówić o czymś, co fizycy nazywają pędem. Im większa prędkość kamienia i im większa jego masa, tym większy jest jego pęd. Nie muszę chyba tłumaczyć jak spotkanie takiego pędzącego kamienia i dajmy na to okna twojego sąsiada może się zakończyć? Fizycy taką zdolność rozpędzonych przedmiotów do czynienia destrukcji nazywają przekazywaniem energii. Miło, prawda? Mechanicznie wygląda to tak: rzucając kamieniem zużywasz energię swoich mięśni. Im więcej jej zużyjesz, tym oczywiście bardziej się zmęczysz, ale też kamień nabierze większej prędkości i będzie miał więcej energii do zrobienia tego, po co go wysłałeś – prosta kalkulacja. A teraz najciekawsze – kiedy kamień trafia w swój ostateczny cel, czyli w naszym przykładzie okno sąsiada, to następuje kolejna wymiana energii. Kamień w wyniku uderzenia musi wyhamować, a więc traci energię. To ile jej utraci zależy od tego jak mocno wyhamuje. I tutaj do gry wkracza okno, które cały ten impet musi przyjąć na siebie. Jeśli energii nie było dużo (kamień był lekki i leciał wolno), to szyba zadrży złowieszczo (ale jakoś to wytrzyma), a kamień się odbije. Natomiast jeżeli tej energii będzie za dużo (ciężki kamień, diabelnie szybki), szyba odkształci się tak mocno, że zwyczajnie pęknie, a kamień, lekko tylko spowolniony, poleci sobie dalej. Przykład może i drastyczny, ale doskonale obrazuje to, co dzieje się z elektronami. Jeżeli tylko uda nam się je rozpędzić i skierować do naszego smartfona, wówczas zaczną one trzeć i rozbijać się o zamkniętą w nim elektronikę, przekazując mu w ten sposób energię. Jeżeli wpuścimy tej energii zbyt dużo, to ta delikatna elektronika rozleci się na kawałki tak samo jak szyba. Na szczęście o odpowiednie dawki energii martwi się już sam telefon, więc nie będziemy się tym faktem teraz zajmować. Wiesz już, że prąd, a więc strumień rozpędzonych elektronów może nieść ze sobą energię. Nie przez przypadek elektryczność oparta jest na elektronach – to właśnie te cząstki, a nie na przykład protony, czy neutrony jest najłatwiej zmusić do ruchu. Ale jak? To również jest bardzo proste. Wystarczy zebrać ich ogromną ilość w jednym miejscu i je tam zamknąć. I to tyle? Owszem, bo nie wiem czy wiesz, ale z elektronami jest podobnie jak z ludźmi. Zamknij większa grupę w małym pomieszczeniu, a bardzo szybko zauważysz jak zaczną się wiercić, rozpychać i walić w drzwi, byś ich wypuścił. Elektrony również nie lubią swojego towarzystwa i najchętniej trzymają się z dala od siebie. Tak wyglądają elektrony zamknięte w kuli. Starają się uciec jak najdalej od siebie. Nie ma to oczywiście nic wspólnego z uczuciami. Po prostu elektrony obdarzone są tak zwanym ,,ładunkiem ujemnym”, a fizyka mówi nam, że cząstki o tym samym ładunku zawsze będą się wzajemnie odpychać. Więcej szczegółów na ten temat możesz w wolnej chwili przeczytać tutaj: Czym jest ładunek elektryczny? – artykuł na Elektrony chcą uciec od siebie, ale zamknięte w takim akumulatorze, czy baterii nie za bardzo mają dokąd. Rozwiązanie pojawia się, gdy akumulator taki włożymy do telefonu. Obwody naszego smartfona stają się wówczas jedyną drogą ucieczki, choć oczywiście istnieje pewien haczyk. Droga ta jest bowiem prawdziwym torem przeszkód usianym kondensatorami, rezystorami, tranzystorami i innymi ,,-torami”. Na szczęście dla nas te biedne, bogu ducha winne elektrony wolą trochę się przemęczyć i poobijać, niż spędzić ze sobą choćby kolejną sekundę w zamknięciu. Tym oto sposobem nasz telefon zdobywa energię, a elektrony płyną sobie przed siebie do… No właśnie, gdzie? By osiągnąć wieczny spokój? Niestety podstawową funkcją akumulatorów jest możliwość ich ponownego naładowania i wykorzystania. Z tego też powodu nie możemy ot tak wypuścić na wolność opuszczających nasz telefon elektronów. Zamiast tego musimy je zmagazynować, na przykład po drugiej stronie akumulatora, gdzie będą grzecznie czekały na transport z powrotem, by cały horror… to znaczy proces rozpoczął się od początku. Łatwiej powiedzieć, niż zrobić Z opisu wszystko wydaje się proste – elektrony płyną obwodami naszego telefonu w jedną stronę, a potem ładując akumulator przenosimy je z powrotem i cykl możemy zacząć od nowa. Niestety rzeczywiste wykonanie takiego mechanizmu to zupełnie inna bajka. Dlaczego? Wcześniej wspomniałem choćby o tym, że elektrony są tak małe, iż nawet nie wiemy jak wyglądają. Tym bardziej trudno byłoby nam złapać je w siatkę i ot tak zamknąć po jednej stronie akumulatora. Potem musielibyśmy jeszcze liczyć na to, że spokojnie popłyną na jego drugą stronę i tam ponownie dadzą się zamknąć. Nierealne. Jak to się w takim razie robi? Na czym polega sztuczka? Zacznijmy może od przypomnienia czegoś, co napisałem kilka akapitów wcześniej: Baterie i akumulatory wypełnione są związkami chemicznymi, które reagując ze sobą potrafią produkować prąd. Zamiast głowić się nad tym skąd wziąć pojedyncze elektrony, możemy wykorzystać fakt, że ich najlepszym źródłem są atomy – w końcu elektrony latają wokół ich jąder całymi chmarami. Ponadto same atomy bardzo często zbijają się w większe skupiska zwane molekułami, albo tworzą szereg jeszcze większych związków chemicznych. Te jesteśmy w stanie nie tylko bez trudu dostrzec, ale i zamknąć gdzie chcemy i w jakiej ilości chcemy. Oczywiście na koniec pozostaje jeszcze kwestia przekonania atomów do tego, by oddały nam swoje elektrony, a to nie zawsze jest takie łatwe… Na szczęście wybór jeśli chodzi o dawców mamy spory, bowiem przebierać możemy wśród 118 różnych pierwiastków. Warto wiedzieć, że każdy z nich ma swój indywidualny numer zwany liczbą atomową, która to wprost określa ile elektronów wiruje wokół jądra danego pierwiastka. Wszystko to niezwykle przejrzyście widać na tablicy Mendelejewa. Wybór nie jest rzecz jasna zupełnie dowolny – niektóre z pierwiastków są bardziej podatne na współpracę, inne mniej. Są też takie, których nie ma nawet sensu przekonywać – tych maruderów zaznaczyłem na biało. Dlaczego nie ma to sensu? Większość z nich to po prostu pierwiastki radioaktywne, a takich atrakcji w domowych akumulatorach raczej nie chcemy. Z kolei biała kolumna widoczna po prawej stronie tablicy (poczynając od helu) to tak zwane gazy szlachetne. Nazwano je tak dlatego, że są zbyt szlachetne, by oddać swoje elektrony na poczet zasilania jakiejś prostackiej elektroniki. Tak przynajmniej słyszałem… Wykluczając te ,,białe plamy” pozostaje nam 76 pierwiastków, które w naturze mieszają się i łączą co potencjalnie daje tysiące przeróżnych związków chemicznych. Związków, które mogą dać nam to, czego potrzebujemy. A czego potrzebujemy? Tak jak mówiłem – po jednej stronie akumulatora muszą znaleźć się związki chemiczne, które reagując ze sobą chętnie oddadzą elektrony, a po drugiej takie, które te elektrony przyciągną do siebie i przechowają do czasu ponownego naładowania. W 1800 roku niejaki Alessandro Volta odkrył pierwszą taką parę reakcji. Okazało się, że jeśli rozpuścimy cynk (Zn) w odpowiednim roztworze, to bez problemu odda nam on 2 elektrony. Z drugiej strony miedź (Cu) nie za bardzo lubi takie rozpuszczanie i z nieukrywaną radością zapewni schronienie dwóm elektronom, dzięki którym będzie w stanie się z takiego roztworu wydostać (fachowo mówimy wytrącić). I o ile taka uczciwa, jednostronna wymiana elektronów między cynkiem i miedzią stała się podstawą pierwszej w historii baterii, to niestety proces ten jest nieodwracalny. Oznacza to, że w trakcie tejże wymiany, w strukturze związków zachodzą pewne trwałe zmiany i nie możemy takiej baterii ot tak podłączyć do ładowarki i przetransportować elektronów z powrotem. Tak przynajmniej było 200 lat temu, bowiem dzisiejsza znajomość chemii i technologii pozwala stworzyć baterie oparte na cynku i miedzi, które można powtórnie naładować. To już jednak zupełnie inna historia. Pierwszą w pełni odwracalną parą reakcji była ta odkryta przez wspomnianego Gastona Planté, ochrzczona mianem akumulatora kwasowo-ołowiowego. Ołów zamknięty z jednej strony akumulatora reaguje z roztworem kwasu siarkowego, oddając po drodze 2 elektrony. Po drugiej stronie zamknięty jest tlenek ołowiu. Ołów bardzo chce oderwać się od tlenu, a do tego potrzebuje… zgadłeś, dokładnie dwóch zbłąkanych elektronów. Jak wspomniałem obie reakcje są w pełni odwracalne. To znaczy, że możemy podłączyć taki akumulator do ładowarki i ona, za pomocą energii pobieranej z gniazdka, siłą wyrwie przesłane elektrony z drugiego końca (ołów na powrót połączy się z tlenem) i przetransportuje je z powrotem na początek, wpychając je do atomu ołowiu (który wcześniej je porzucił). Zauważ, że w przypadku historii cynku i miedzi oraz ołowiu i jego tlenku piszę jedynie o dwóch przekazywanych elektronach. Ale dlaczego tylko dwóch? Miedź (Cu) i cynk (Zn) mają kolejno 29 i 30 elektronów, a ołów ma ich aż 82! Odbieranie mu tylko dwóch elektronów, skoro ma ich aż tyle wydaje się marnotrawstwem potencjału. W końcu im więcej elektronów zabierzemy, tym więcej energii mamy do wykorzystania, prawda? Jasne, ale wyciągnięcie elektronu z orbity też kosztuje. Pamiętasz o sile i energii naszych mięśni zdolnej rzucić kamieniem? Elektron również nie pomknie przed siebie ot tak, bo potrzebuje do tego energii. Energii, której źródłem są reakcje chemiczne. Prawdziwy problem tego mechanizmu odkryjemy, kiedy spojrzymy w tabelę energii potrzebnej do jonizacji pierwiastków (jonizacji, czyli właśnie odebrania bądź dołożenia im elektronów). Pokaże nam ona, że wyrwanie pierwiastkowi każdego kolejnego elektronu wymaga średnio dwa razy więcej energii niż poprzedniego. W rezultacie jesteśmy w stanie zmusić większość atomów do oddania jednego elektronu – łatwizna. Odebranie drugiego wymaga już dwa razy więcej energii, ale zwykle nie jest to aż tak duża wartość – da się zrobić. Trzeci elektron to już 4 razy więcej energii niż na początku. Niewiele znanych nam reakcji, które możemy bezpiecznie zamknąć w akumulatorze to potrafi. Cztery i więcej elektronów to już temat poza naszym zasięgiem. No chyba, że zamontujemy w akumulatorze mikroskopijne działo laserowe zdolne wybijać z atomów dowolną ilość elektronów… Tak, w takim wypadku nie byłoby problemu. Wspomniane elektronowe ograniczenie całkowicie zmienia zasady gry. W tym momencie nie zależy nam na zastosowaniu pierwiastków o dużej ilości elektronów, bo i tak wyciągniemy z nich dwie, góra trzy sztuki. Jest to o tyle istotne, że im więcej elektronów ma pierwiastek, tym automatycznie więcej protonów i neutronów znajduje się w jego jądrze i przez to cały atom staje się cięższy. Czy jest w takim razie sens pakować do akumulatora duże i ciężkie atomy ołowiu (82 elektrony), skoro równie dobrze 2 elektrony możemy wyciągnąć ze znacznie lżejszych pierwiastków? Między innymi ten właśnie czynnik sprawia, że akumulatory oparte o nikiel (Ni-Fe, Ni-Cd, NiMh) są w stanie wygenerować od 2 do 4 razy więcej energii z każdego kilograma akumulatora, niż ich ołowiowi kuzyni wagi ciężkiej. I choć nikiel nie jest specjalnie mniejszy od atomu ołowiu, to związki chemiczne jakie wykorzystuje w swoich reakcjach można z łatwością sprasować, zwinąć w rulonik i zamknąć w małej, cylindrycznej obudowie. Akumulatory kwasowe i zachodzące w nich reakcje wymagają znacznie więcej przestrzeni. Skoro ołów jest tak nieporęczny, to dlaczego oparte o niego akumulatory wciąż zasilają rozruszniki w naszych autach? Z racji tego, że w samochodach mamy sporo miejsca, a przy dwóch tonach stali na kółkach akumulator ważący kilka kilogramów nie robi różnicy, to na korzyść kwasówek przeważają trzy rzeczy: Po pierwsze do dziś pozostają one najtańszym rodzajem akumulatorów. Ołów nie jest może tak powszechny w skorupie ziemskiej jak nikiel, ale za to jego pozyskanie jest dość tanie, tak jak zresztą potrzebnego do reakcji kwasu siarkowego. Oprócz tego cały akumulator jest na tyle prosty w budowie, że teoretycznie sam mógłbyś zrobić sobie taki w sprawa to całkiem niezłe napięcie generowane przez taki akumulator. Bo widzisz w chemii baterii, oprócz ilości oddanych elektronów, istotne jest to jak bardzo dany związek chce się ich pozbyć, lub je przyjąć. Im bardziej, tym z większą prędkością elektrony są wyrzucane z jednej i zasysane z drugiej strony ogniwa. Większa prędkość to, tak jak w przypadku kamienia, więcej energii, którą elektrony zostawią, obijając się o elektronikę naszych urządzeń. Zamknięta w akumulatorach kwasowo-ołowiowych chemia generuje napięcie rzędu 2 V, co nie jest takim złym wynikiem w porównaniu do 1,2 V w Ni-Cd i NiMh. Oczywiście akumulatory w naszych samochodach mają aż 12 V, ale to wynika jedynie z połączenia w jego wnętrzu 6 mniejszych akumulatorów i ostatnia sprawa to moc. Każda reakcja chemiczna zachodzi z określoną prędkością, a ta związana z ołowiem i kwasem siarkowym zachodzi niezwykle szybko. W połączeniu z dość wysokim napięciem ogniwa, pozwala to wytworzyć w ułamku sekundy ogromną moc potrzebną do wystartowania rozruszników samochodowych (prąd płynący z akumulatora osiąga wartość rzędu kilkuset amperów). Komponenty Ni-Cd oraz NiMh nie potrafią przewodzić tak ogromnego prądu, a ich zwarta konstrukcja sprawia, że są one znacznie bardziej wrażliwe na rosnącą przy okazji takiego prądu temperaturę. Ich przewagą nad ołowiem jest z kolei znacznie większa ilość zmagazynowanej energii, która, jeśli tylko nie potrzebujemy jej szybko wyciągnąć, może nam posłużyć znacznie, ale to znacznie dłużej. Telefony komórkowe i inna przenośna elektronika to zupełnie inny temat niż rozrusznik samochodu. W tym wypadku niewielki rozmiar i waga to klucz do sukcesu. Chcemy aby nasz telefon miał duży ekran i był szybki, a do tego zamknięty był w małej i cieniutkiej obudowie. Badacze doskonale rozumieli kierunek w jakim idzie przemysł urządzeń przenośnych, dlatego też za cel obrali sobie stworzenie najlżejszych na świecie i najpojemniejszych akumulatorów w historii. Aby to zrobić, musieli spróbować okiełznać jeden z najlżejszych dostępnych nam pierwiastków… W tym momencie na scenę (cały na biało) wkracza lit (Li). Na tablicy Mendelejewa oznaczony jest dumnym numerem 3, a to sprawia, że jest on jednym z najlżejszych znanych nam pierwiastków – pod tym względem przegrywa jedynie z wodorem i helem. W licie ciekawe jest również to, że będąc pierwiastkiem lżejszym od takiego tlenu czy azotu, w przeciwieństwie do nich jest ciałem stałym. Dzięki temu jego atomy są ciasno upakowane, a taki zwarty materiał znacznie łatwiej jest obrobić i zamknąć w niewielkim akumulatorze. Jasne, gazy można przecież potraktować wysokim ciśnieniem i skompresować, ale skoro mamy super-lekki lit, to po co kombinować? Lit (nie jako atom, a jako kawałek materii) waży mniej więcej tyle co drewno sosnowe. Jego gęstość to jakieś 0,51 g/cm3, a to oznacza, że jest on niemal dwukrotnie lżejszy od wody, jakieś 16 razy lżejszy od niklu i 20 razy lżejszy od ołowiu. Idealny przepis na super-lekkie baterie! Z drugiej jednak strony waga piórkowa kompletnie nie przekłada się na rozmiar atomu. Choć lit ma tylko po trzy protony, neutrony i elektrony, to w rzeczywistości ponad połowa tablicy Mendelejewa jest od niego mniejsza! W tym ołów, który przypomnę ma aż po 82 sztuki protonów, neutronów i elektronów. Względny rozmiar atomów; źródło danych: To, że atom zbudowany z 20 razy większej liczby cząsteczek, będący 20 razy cięższy może być jednocześnie mniejszy, to dość skomplikowana do wyjaśnienia kwestia. Orbity wokół atomów potrafią być naprawdę pokręcone, jądro atomowe przyciąga elektrony z różną siłą, a te oddziałują również ze sobą nawzajem. Ostateczny wynik jest taki, że choć lit jest najlżejszy i oparte o niego akumulatory również takie będą, to rozmiar jego atomów wcale nie sprawia, że możemy zamknąć tego litu w małej baterii nie wiadomo ile. Patrząc z perspektywy atomowej to zajmuje on praktycznie tyle samo miejsca co ołów. A może akumulatory litowe nie są wcale tak fantastyczne jak wszyscy nam mówią? Bez obaw – są świetne. Cała tajemnica baterii litowo-jonowych tkwi tak naprawdę w określeniu „jonowy”. Jonizowanie to, jak już wspomniałem, ładne określenie na odbieranie bądź dokładanie atomom elektronów. Kiedy pierwiastek odda elektron lub jakiś przyjmie, wówczas nazywamy go jonem. Lit w standardzie ma 3 elektrony. Dwa z nich znajdują się na tyle blisko jądra atomowego i są przez nie tak mocno przyciągane, że możemy o nich zapomnieć. Za to do opisania trzeciego elektronu najlepiej pasuje określenie ,,kula u nogi”. Wiem, brzmi zabawnie, ale w tym wypadku nie przesadzam. Lit chce się tego trzeciego elektronu pozbyć tak bardzo, że wchodzi w reakcję z niemal wszystkim co spotka na swojej drodze – nawet z wodą, czy powietrzem! Myślisz pewnie: „Co z tego, to tylko jeden elektron. Słabo!”. Nie daj się jednak zmylić pozorom – lit tak bardzo chce zostać jonem, że w trakcie oddawania tego jednego elektronu generuje napięcie rzędu 3,2 – 3,8 V! To sprawia, że każdy jeden uwolniony przez lit elektron niesie ze sobą 3 razy więcej energii niż ten z akumulatorów niklowych i dwa razy więcej niż ten z kwasówek. No tak, ale ołów daje przecież dwa elektrony, więc gdzie ta przewaga litu? Już tłumaczę. Każdy akumulator do oddania i przyjmowania elektronów wykorzystuje reakcje chemiczne – są one jedynym możliwym źródłem potrzebnej do tego energii. Naukowcy, którzy otrzymali Nobla za opracowanie litowych akumulatorów tak naprawdę dostali go za to, że… poniekąd oszukali lit. Wiedzieli oni, że zmuszenie tego pierwiastka do oddania elektronu to nie sztuka – jednorazowe baterie litowe istniały od lat. Problemem było znalezienie takiej reakcji, poprzez którą po drugiej stronie akumulatora lit chętnie przyjmie odrzucony elektron z powrotem. Oczywiście kilka takich reakcji udało się znaleźć, ale wszystkie one miały swoje ograniczenia i istotne wady, całkowicie niweczące potencjał litu. Wtedy nagle, w latach 70tych ktoś wpadł na pomysł, że żadna reakcja nie musi tak naprawdę zachodzić, dopóki lit nie będzie o tym wiedział. Oszustwo godne Nobla Atom litu z trzema elektronami na pokładzie jest dość duży. Kiedy jednak odda swój elektron i stanie się jonem, wówczas jego średnica zmniejsza się praktycznie dwukrotnie. Jest on wówczas o ponad 20% mniejszy od ołowiu, który już oddał dwa elektrony! Przyznasz, że to dość spora różnica. Do tego naukowcy odkryli strukturę zwaną tlenkiem kobaltu. Okazało się, że jon litu ma akurat taką wielkość, że idealnie wpasowuje się w wąskie szczeliny między warstwami tego związku. Dodatkowo kobalt nie jest zbyt wybrednym pierwiastkiem i potrafi zaopiekować się dodatkowym elektronem, jaki przy okazji oddaje mu lit. Ostatecznie taki tlenek kobaltu z powtykanym tu i ówdzie litem nazywamy tlenkiem kobaltu litu (LiCoO2) i jest to podstawowy związek wykorzystywany w akumulatorach litowo-jonowych. A i przy okazji mogę dodać, że taki proces wciskania atomów w strukturę jakiegoś związku nazywa się interkalacją. Lit czuje się w takim układzie częścią związku, choć nie tworzy z nim pełnoprawnego wiązania. Kobaltowi jest właściwie wszystko jedno, więc możemy uznać, że wszyscy są zadowoleni. Tam jednak gdzie wszyscy są szczęśliwi nie ma żadnej energii elektrycznej do wykorzystania. My musimy sprawić, by litowi było niewygodnie, by chciał zmienić stan, w jakim się znalazł. W tym celu podłączamy taki tlenek kobaltu litu do ładowarki i zaczynamy wysysać elektrony. Akcja ta na kobalcie nie robi żadnego wrażenia – jest on metalem podobnym do miedzi i żelaza, czyli przewodnikiem, który nie do końca dba o to, czy zwiniemy mu jakiś elektron. A już z pewnością nie będzie mu szkoda tego, który przed chwilą otrzymał od litu. Niestety sytuacja ta stawia jon litu w bardzo trudnym położeniu. Wcześniej oddał on ujemnie naładowany elektron, przez co sam stał się nieco dodatnio naładowany. Teraz elektron ten wypompowaliśmy na zewnątrz, przez co cała struktura tlenku kobaltu stała się delikatnie dodatnia. Fizyka jest w tej kwestii nieubłagana – dodatni tlenek kobaltu zacznie odpychać dodatni jon litu. Pamiętasz jak wspominałem o tym na początku artykułu? Takie same ładunki, czy to dodatnie, czy ujemne będą się zawsze odpychać. Tlen i kobalt trzymają się siebie mocno – to dość zwarta struktura pełniąca rolę swego rodzaju rusztowania. Jony litu, które powciskały się gdzie mogły, ale do niczego się tak naprawdę porządnie nie przyczepiły, zostają wypchnięte ze struktury. Lit nie ma się dokąd udać – z elektronem było mu źle, ale bez niego i na dodatek bez innych atomów, do których może się przykleić jest jeszcze gorzej. Nie wiedząc co zrobić odwraca się i oto widzi światełko w tunelu. Tam, po drugiej stronie akumulatora roztacza się niebieskawy blask i przyciąga go jakaś tajemnicza siła. Jak gdyby tam było jego miejsce… Lit przemierza wnętrze akumulatora, przeciskając się przez nasączony elektrolitem separator, który dzieli akumulator na dwie części. Za nim widzi kolejny układ warstw, tym razem upiornie czarny. Nim zdąży wyhamować, ciągnięty tajemniczą siła wpada między warstwy ciemnej, grafitowej struktury i grzęźnie tam, nie mając siły się wyrwać. Spogląda w głąb i widzi, że w tej samej strukturze uwięzione są znajome elektrony… Tak, to dokładnie te same elektrony, które on i inne jony litu przed chwilą oddały kobaltowi. Lit orientuje się, że tajemnicza, przyciągająca siła i niebieskawy blask pochodziły właśnie od nich – morza ujemnie naładowanych elektronów, do których dodatnio naładowany jon litu czuje naturalny pociąg. Uwięziony lit nie jest jednak z tego faktu zadowolony. Nie chce na powrót łączyć się z elektronami. Niestety z jednej strony cała ich chmara wciąga go w głąb grafitowej struktury, z drugiej zaś wciąż odczuwa odpychające echo kobaltu. W ten oto sposób lit wpada w pułapkę. W wymyślone przez genialnych konstruktorów oszustwo, pozwalające utrzymać go w niewygodnym położeniu. Lit grzęźnie wewnątrz tego grafitowego labiryntu i to bez pomocy jakiejkolwiek reakcji chemicznej. Oczywiście nie spędzi on tam wieczności. Musi jedynie wytrzymać do momentu, w którym do akumulatora podłączymy jakiś odbiornik. Wpinając akumulator do np. telefonu, elektrony zyskują drogę ucieczki – grafit nie jest dla nich tak gościnny jak kobalt, stąd czują się w jego strukturze jak sardynki zamknięte w puszce. Słysząc ciche, niosące się przewodami nawoływanie kobaltu, elektrony postanawiają wykorzystać okazję. Te lekkie i zwinne cząstki bez problemu uciekają z grafitowej pułapki. Po drodze zostawiają w telefonie standardową „opłatę” energetyczną i ponownie powracają do struktury tlenku kobaltu, któremu jak wiemy i tak jest wszystko jedno… Obojętny za to nie jest na pewno lit. Dzięki temu, że elektrony powoli znikają, maleje też siła trzymająca go między warstwami grafitu. Z drugiej strony kobalt karmiony elektronami również zapomina o wystosowanym wcześniej akcie nienawiści (to znaczy przestaje on być naładowany dodatnio i odpychać lit). Lepszej okazji nie będzie – jony litu opuszczają grafit i przedzierają się z powrotem przez separator, docierając wreszcie do przytulnych warstw kobaltu, wyłożonych mięciutką połacią tlenu. W ten oto sposób zakończył się cykl ładowania i rozładowania akumulatora, w trakcie którego jony litu przemierzyły jego wnętrze raz w jedną, raz w drugą stronę. Mechanizm ten nie bez powodu określa się mianem ,,bujanego fotela” (ang. rocking chair). Geniusz i prostota jakie stoją za tym pomysłem przyczyniły się do największej obok Internetu rewolucji XXI wieku – powstania akumulatora litowo-jonowego. Uproszczona animacja akumulatora litowo-jonowego Cena geniuszu Ogniwa litowo-jonowe to najwydajniejsze i najpotężniejsze akumulatory jakie do tej pory pojawiły się na rynku. Niestety jakość, jak to zwykle bywa, niesie ze sobą wysoką cenę. Skąd się ona bierze? Zacznijmy może od tego, że chęć litu do reagowania wszędzie i ze wszystkim sprawia, że jest on dość problematyczny w przechowywaniu i obróbce. Z tego samego powodu nie znajdziemy na naszej planecie litu w czystej postaci. Najczęściej odzyskuje się go ze związków chemicznych, takich jak chlorek litu (LiCl), wodorotlenek litu (LiOH) i węglan litu (Li2CO3). Nie jest to proces ani łatwy, ani wydajny. Do uzyskania kilograma czystego litu potrzeba aż 5,3 kg węglanu litu. Największe złoża tego surowca znajdują się w Boliwii (około 32% światowych zasobów), a do największych producentów czystego litu należą Chile, Chiny i Argentyna, produkując około kilogram litu w ciągu każdej sekundy jaką spędzasz na czytaniu tego artykułu. Do tego wyprodukowanie akumulatora z pierwiastka, który ma tak ogromną energię i tylko czyha na okazję, by z czymś przereagować wymaga zastosowania całej masy zabezpieczeń. Akumulatory Li-Ion nie lubią przegrzewania, przeładowania i nadmiernego rozładowania. Stąd naszpikowane są elektroniką trzymającą w ryzach parametry akumulatora. To jednak nie zawsze zdaje egzamin, bo wystarczy najmniejsze zanieczyszczenie litu lub błąd w trakcie produkcji, by wszystko zakończyło się efektownym pożarem. Słyszałeś może o aferze z wybuchającymi bateriami w Samsungach Galaxy Note 7? Swego czasu zabronione było wnoszenie tego smartfona na pokład samolotu, a firma Samsung rozsyłała klientom specjalnie zabezpieczone opakowania przeznaczone do zwrotu tego niebezpiecznego telefonu. Myślę jednak, że nie będziemy teraz wnikać w co bardziej szczegółowe aspekty techniczne akumulatorów Li-Ion. Te wolałbym poruszyć w osobnym, przeznaczonym do tego artykule. Mam nadzieję, że dzisiejsza podróż uświadomiła Ci jak te akumulatory działają i jakim wyzwaniem były dla uczonych pod koniec XX wieku. Następnym razem porozmawiamy o podtypach baterii Li-Ion, ich zastosowaniu, a także ogólnych wadach i zaletach. Czym różni się akumulator w smartfonie od tego w samochodzie elektrycznym? Czym tak naprawdę są następcy Li-Ionów, czyli baterie litowo-polimerowe? Czy baterie z wody morskiej mają szansę za chwilę zdetronizować ,,litówki”? Jeśli nie chcesz przegapić żadnego nadchodzącego artykułu, to zapisz się poniżej na newsletter lub polub moją moją stronę na facebooku. Do usłyszenia! Dzięki za poświęcony czas! Bibliografia Lithium Batteries Science and Technology – C. Julien, A. Mauger, A. Vijh, K. Zaghib, Handbook of Batteries Third Edition – D. Linden, T. Reddy, Akira Yoshino – Lithium-ion battery and its evolution – dokument dostępny pod adresem: Lithium Use in Batteries – T. Goonan, Department of the Interior, Geological Survey. – model 3D struktury tlenku kobaltu litu. How Does a Lithium-ion Battery Work? – Office of Energy Efficiency and Renewable Energy, adres: Podobało się? Zajrzyj na i wspieraj moją dalszą pracę! A może chciałbyś przeczytać ciekawą książkę? Powiadomić Cię o nowych artykułach? Polecam zapisanie się na newsletter lub zajrzenie na facebook’a. W ten sposób nie przegapisz żadnego nowego tekstu!
Akumulator litowo-jonowy 48 V 200 Ah — projektowany okres użytkowania wynoszący ponad 20 lat. Ten Akumulator litowo-żelazowo-fosforanowy 48 V jest idealny w wielu różnych zastosowaniach morskich, kamperów, samochodów kempingowych, przyczep kempingowych, łodzi elektrycznych, wózków widłowych, wózków golfowych, energii słonecznej
Kluczową rolę w tej rewolucji odgrywają baterie litowo-jonowe, które stanowią główne źródło zasilania w pojazdach elektrycznych. Celem niniejszego artykułu jest zaprezentowanie głównych aspektów związanych z bateriami litowo-jonowymi w samochodach elektrycznych.
LzYQa0H. g6873ogren.pages.dev/396g6873ogren.pages.dev/59g6873ogren.pages.dev/346g6873ogren.pages.dev/260g6873ogren.pages.dev/235g6873ogren.pages.dev/180g6873ogren.pages.dev/175g6873ogren.pages.dev/177g6873ogren.pages.dev/371
baterie litowo jonowe do samochodów elektrycznych